Background: Extremely low frequency (ELF) electromagnetic fields (EMF) are known to produce a variety of biological effects. Clinical studies are ongoing using EMF in healing of bone fractures and skin wounds. However, little is known about the mechanisms of action of ELF-EMF. Several studies have demonstrated that expression and regulation of nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2) are vital for wound healing; however, no reports have demonstrated a direct action of ELF-EMF in the modulation of these inflammatory molecules in human keratinocytes.
Objectives: The present study analysed the effect of ELF-EMF on the human keratinocyte cell line HaCaT in order to assess the mechanisms of action of ELF-EMF and to provide further support for their therapeutic use in wound healing.
Methods: Exposed HaCaT cells were compared with unexposed control cells. At different exposure times, expression of inducible NOS (iNOS), endothelial NOS (eNOS) and COX-2 was evaluated by Western blot analysis. Modulation of iNOS and eNOS was monitored by evaluation of NOS activities, production of nitric oxide (NO) and O(2)(-) and expression of activator protein 1 (AP-1). In addition, catalase activity and prostaglandin (PG) E(2) production were determined. Effects of ELF-EMF on cell growth and viability were monitored.
Results: The exposure of HaCaT cells to ELF-EMF increased iNOS and eNOS expression levels. These ELF-EMF-dependent increased expression levels were paralled by increased NOS activities, and increased NO production. In addition, higher levels of AP-1 expression as well as a higher cell proliferation rate were associated with ELF-EMF exposure. In contrast, ELF-EMF decreased COX-2 expression, PGE(2) production, catalase activity and O(2)(-) production.
Conclusions: Mediators of inflammation, such as reactive nitrogen and PGE(2), and keratinocyte proliferation are critical for the tissue regenerative processes. The ability of ELF-EMF to upmodulate NOS activities, thus nitrogen intermediates, as well as cell proliferation, and to downregulate COX-2 expression and the downstream intermediate PGE(2), highlights the potential therapeutic role of ELF-EMF in wound healing processes.