Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor
- PMID: 19801668
- PMCID: PMC2781667
- DOI: 10.1074/jbc.M109.040980
Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor
Abstract
The Runx2 transcription factor is required for commitment of mesenchymal cells to bone lineages and is a major regulator of osteoblast-specific gene expression. Runx2 is subject to a number of post-transcriptional controls including selective proteolysis and phosphorylation. We previously reported that Runx2 is phosphorylated and activated by the ERK/MAPK pathway (Xiao, G., Jiang, D., Thomas, P., Benson, M. D., Guan, K., Karsenty, G., and Franceschi, R. T. (2000) J. Biol. Chem. 275, 4453-4459). In this study, we used a combination of in vitro and in vivo phosphorylation analysis, mass spectroscopy, and functional assays to identify two sites at Ser(301) and Ser(319) within the proline/serine/threonine domain of Runx2 that are required for this regulation. These sites are phosphorylated by activated ERK1 in vitro and in cell culture. In addition to confirming ERK-dependent phosphorylation at Ser(319), mass spectroscopy identified two other ERK-phosphorylated sites at Ser(43) and Ser(510). Furthermore, introduction of S301A,S319A mutations rendered Runx2 resistant to MAPK-dependent activation and reduced its ability to stimulate osteoblast-specific gene expression and differentiation after transfection into Runx2-null calvarial cells and mesenchymal cells. In contrast, S301E,S319E Runx2 mutants had enhanced transcriptional activity that was minimally dependent on MAPK signaling, consistent with the addition of a negative charge mimicking serine phosphorylation. These results emphasize the important role played by Runx2 phosphorylation in the control of osteoblast gene expression and provide a mechanism to explain how physiological signals acting on bone through the ERK/MAPK pathway can stimulate osteoblast-specific gene expression.
Figures
Similar articles
-
Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2.J Biol Chem. 2002 Sep 27;277(39):36181-7. doi: 10.1074/jbc.M206057200. Epub 2002 Aug 28. J Biol Chem. 2002. PMID: 12110689
-
Reciprocal Control of Osteogenic and Adipogenic Differentiation by ERK/MAP Kinase Phosphorylation of Runx2 and PPARγ Transcription Factors.J Cell Physiol. 2016 Mar;231(3):587-96. doi: 10.1002/jcp.25102. J Cell Physiol. 2016. PMID: 26206105 Free PMC article.
-
Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity.J Bone Miner Res. 2012 Mar;27(3):538-51. doi: 10.1002/jbmr.561. J Bone Miner Res. 2012. PMID: 22072425 Free PMC article.
-
MAP Kinase-Dependent RUNX2 Phosphorylation Is Necessary for Epigenetic Modification of Chromatin During Osteoblast Differentiation.J Cell Physiol. 2017 Sep;232(9):2427-2435. doi: 10.1002/jcp.25517. Epub 2017 Apr 10. J Cell Physiol. 2017. PMID: 27514023 Free PMC article.
-
Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation.Connect Tissue Res. 2003;44 Suppl 1(Suppl 1):109-16. Connect Tissue Res. 2003. PMID: 12952183 Free PMC article. Review.
Cited by
-
Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis.Nat Genet. 2013 Mar;45(3):308-13. doi: 10.1038/ng.2539. Epub 2013 Jan 27. Nat Genet. 2013. PMID: 23354439 Free PMC article.
-
The Effect of Angiogenesis-Based Scaffold of MesoporousBioactive Glass Nanofiber on Osteogenesis.Int J Mol Sci. 2022 Oct 21;23(20):12670. doi: 10.3390/ijms232012670. Int J Mol Sci. 2022. PMID: 36293527 Free PMC article.
-
A Novel Long Noncoding RNA, Lnc-OAD, Is Required for Bone Morphogenetic Protein 2- (BMP-2-) Induced Osteoblast Differentiation.Biomed Res Int. 2021 Mar 16;2021:6697749. doi: 10.1155/2021/6697749. eCollection 2021. Biomed Res Int. 2021. PMID: 33816629 Free PMC article.
-
Glucose oxidase facilitates osteogenic differentiation and mineralization of embryonic stem cells through the activation of Nrf2 and ERK signal transduction pathways.Mol Cell Biochem. 2016 Aug;419(1-2):157-63. doi: 10.1007/s11010-016-2760-8. Epub 2016 Jul 19. Mol Cell Biochem. 2016. PMID: 27431005
-
Sost down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4.FEBS Lett. 2011 Aug 4;585(15):2450-4. doi: 10.1016/j.febslet.2011.06.019. Epub 2011 Jun 28. FEBS Lett. 2011. PMID: 21723865 Free PMC article.
References
-
- Ducy P., Zhang R., Geoffroy V., Ridall A. L., Karsenty G. (1997) Cell 89, 747–754 - PubMed
-
- Nakashima K., Zhou X., Kunkel G., Zhang Z., Deng J. M., Behringer R. R., de Crombrugghe B. (2002) Cell 108, 17–29 - PubMed
-
- Yang X., Matsuda K., Bialek P., Jacquot S., Masuoka H. C., Schinke T., Li L., Brancorsini S., Sassone-Corsi P., Townes T. M., Hanauer A., Karsenty G. (2004) Cell 117, 387–398 - PubMed
-
- Tou L., Quibria N., Alexander J. M. (2003) Mol. Cell Endocrinol. 205, 121–129 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
