Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin
- PMID: 1980212
- DOI: 10.1021/bi00493a034
Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin
Abstract
The role of negatively charged residues in tuning the absorbance spectrum of bovine rhodopsin has been tested by mutating each aspartate and glutamate to asparagine and glutamine, respectively. Previous work demonstrated that aspartate83, glutamate122, and glutamate134 can be replaced by neutral residues with little or no effect on the absorbance spectrum of the resulting pigment [Nathans, J. (1990) Biochemistry 29, 937-942]. With one exception, mutations at the remaining 19 aspartate and glutamate residues result in very nearly wild-type absorbance spectra. The exception is glutamate113: mutation to glutamine causes the pigment to absorb at 380 nm, reflecting deprotonation of the retinylidene Schiff's base. Upon addition of either chloride, bromide, or iodide, the absorbance rapidly shifts to 495, 498, or 504.5 nm, respectively, reflecting protonation of the Schiff's base. The progressive red shift observed upon addition of halides with larger atomic radii strongly suggests that halides are serving as the Schiff's base counterion. Halides have no effect on the absorbance spectrum of wild-type rhodopsin. I infer, therefore, that glutamate113 is the retinylidene Schiff's base counterion in wild-type rhodopsin. Sakmar et al. [(1989) Proc. Natl. Acad. Sci. U.S.A. 86, 8309-8313] and Zhukovsky and Oprian [(1989) Science 246, 928-930] have arrived at the same conclusion based upon a related series of experiments. These data support a model in which spectral tuning in bovine rhodopsin results from interactions between the polyene chain of 11-cis-retinal and uncharged amino acids in the binding pocket.
Similar articles
-
Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin.Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309-13. doi: 10.1073/pnas.86.21.8309. Proc Natl Acad Sci U S A. 1989. PMID: 2573063 Free PMC article.
-
Localization of the retinal protonated Schiff base counterion in rhodopsin.Biophys J. 1993 Aug;65(2):899-906. doi: 10.1016/S0006-3495(93)81117-2. Biophys J. 1993. PMID: 8105993 Free PMC article.
-
Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants.Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10206-10. doi: 10.1073/pnas.90.21.10206. Proc Natl Acad Sci U S A. 1993. PMID: 7901852 Free PMC article.
-
High-resolution structural studies of the retinal--Glu113 interaction in rhodopsin.Biophys Chem. 1995 Sep-Oct;56(1-2):23-9. doi: 10.1016/0301-4622(95)00011-l. Biophys Chem. 1995. PMID: 7662866 Review.
-
Coupling of protonation switches during rhodopsin activation.Photochem Photobiol. 2007 Mar-Apr;83(2):286-92. doi: 10.1562/2006-06-19-IR-937. Photochem Photobiol. 2007. PMID: 17576345 Review.
Cited by
-
Chemistry of the retinoid (visual) cycle.Chem Rev. 2014 Jan 8;114(1):194-232. doi: 10.1021/cr400107q. Epub 2013 Jul 11. Chem Rev. 2014. PMID: 23905688 Free PMC article. Review. No abstract available.
-
Model of Abnormal Chromophore-Protein Interaction for Е181К Rhodopsin Mutation: Computer Molecular Dynamics Study.Open Biochem J. 2012;6:94-102. doi: 10.2174/1874091X01206010094. Epub 2012 Aug 16. Open Biochem J. 2012. PMID: 22930661 Free PMC article.
-
Cone visual pigments are present in gecko rod cells.Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6841-5. doi: 10.1073/pnas.89.15.6841. Proc Natl Acad Sci U S A. 1992. PMID: 1379723 Free PMC article.
-
Simultaneous Expression of UV and Violet SWS1 Opsins Expands the Visual Palette in a Group of Freshwater Snakes.Mol Biol Evol. 2021 Dec 9;38(12):5225-5240. doi: 10.1093/molbev/msab285. Mol Biol Evol. 2021. PMID: 34562092 Free PMC article.
-
Rapid release of retinal from a cone visual pigment following photoactivation.Biochemistry. 2012 May 22;51(20):4117-25. doi: 10.1021/bi201522h. Epub 2012 May 7. Biochemistry. 2012. PMID: 22217337 Free PMC article.