Radiation carcinogenesis in context: how do irradiated tissues become tumors?

Health Phys. 2009 Nov;97(5):446-57. doi: 10.1097/HP.0b013e3181b08a10.


It is clear from experimental studies that genotype is an important determinant of cancer susceptibility in general, and for radiation carcinogenesis specifically. It has become increasingly clear that genotype influences not only the ability to cope with DNA damage but also influences the cooperation of other tissues, like the vasculature and immune system, necessary for the establishment of cancer. Our experimental data and that of others suggest that the carcinogenic action of ionizing radiation (IR) can also be considered a two-compartment problem: while IR can alter genomic sequence as a result of DNA damage, it can also induce signals that alter multicellular interactions and phenotypes that underpin carcinogenesis. Rather than being accessory or secondary to genetic damage, we propose that such non-targeted radiation effects create the critical context that promotes cancer development. This review focuses on experimental studies that clearly define molecular mechanisms by which cell interactions contribute to cancer in different organs, and addresses how non-targeted radiation effects may similarly act though the microenvironment. The definition of non-targeted radiation effects and their dose dependence could modify the current paradigms for radiation risk assessment since radiation non-targeted effects, unlike DNA damage, are amenable to intervention. The implications of this perspective in terms of reducing cancer risk after exposure are discussed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Humans
  • Neoplasms, Radiation-Induced / metabolism
  • Neoplasms, Radiation-Induced / pathology*
  • Radiobiology / trends
  • Transforming Growth Factor beta / metabolism


  • Transforming Growth Factor beta