Mie potentials for phase equilibria calculations: application to alkanes and perfluoroalkanes

J Phys Chem B. 2009 Nov 5;113(44):14725-31. doi: 10.1021/jp9072137.

Abstract

Transferable united-atom force fields, based on n - 6 Lennard-Jones potentials, are presented for normal alkanes and perfluorocarbons. It is shown that by varying the repulsive exponent the range of the potential can be altered, leading to improved predictions of vapor pressures while also reproducing saturated liquid densities to high accuracy. Histogram-reweighting Monte Carlo simulations in the grand canonical ensemble are used to determine the vapor liquid coexistence curves, vapor pressures, heats of vaporization, and critical points for normal alkanes methane through tetradecane, and perfluorocarbons perfluoromethane through perfluorooctane. For all molecules studied, saturated liquid densities are reproduced to within 1% of experiment. Vapor pressures for normal alkanes and perfluorocarbons were predicted to within 3% and 6% of experiment, respectively. Calculations performed for binary mixture vapor-liquid equilibria for propane + pentane show excellent agreement with experiment, while slight deviations are observed for the ethane + perfluoroethane mixture.