Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2009 Oct;4(10):1002-4.
doi: 10.4161/psb.4.10.9716. Epub 2009 Oct 31.

Auxin homeostasis during lateral root development under drought condition

Affiliations
Free PMC article
Comment

Auxin homeostasis during lateral root development under drought condition

Pil Joon Seo et al. Plant Signal Behav. 2009 Oct.
Free PMC article

Abstract

Lateral root formation is a critical agronomic trait in plant architecture that determines crop productivity and environmental stress adaptability. It is therefore tightly regulated both by intrinsic developmental cues, such as abscisic acid (ABA) and auxin, and by diverse environmental growth conditions, including water deficit and high salinity in the soil. We have recently reported that an Arabidopsis R2R3-type MYB transcription factor, MYB96, regulates lateral root meristem activation under drought conditions via an ABA-auxin signaling crosstalk. In this signaling scheme, the MYB96-mediated ABA signals are incorporated into an auxin signaling pathway that involves a subset of GH3 gene encoding auxin-conjugating enzymes. The MYB96-overexpressing, activation tagging mutant, which is featured by having dwarfed growth and reduced lateral root formation, exhibits an enhanced drought resistance. In the mutant, expression of the GH3 genes was significantly elevated, which is consistent with the reduced lateral root formation. In contrast, the MYB96-deficient knockout mutant produced more lateral roots and was more susceptible to drought stress. Our observations strongly support that MYB96 is a molecular link that integrates ABA and auxin signals in modulating auxin homeostasis during lateral root development, particularly under water deficit conditions. It is also envisioned that the MYB96-mediated signals are related with pathogen resistance response, which is also profoundly affected by water content in plant cells.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A proposed working model for MYB96 function in plant response to biotic and drought stresses. Regulation of stomatal aperture is modulated by the MYB96/RD22-mediated pathway in the shoots. MYB96 also regulates auxin metabolism by inducing the GH3 genes to optimize root growth under drought conditions. In addition, MYB96 may play additional roles in disease resistance response by regulating SA biosynthesis.

Comment on

Similar articles

Cited by

References

    1. Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, et al. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol. 2006;60:107–124. - PubMed
    1. Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol. 2001;4:447–456. - PubMed
    1. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell. 2000;12:2383–2394. - PMC - PubMed
    1. Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, et al. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J. 2000;19:6150–6161. - PMC - PubMed
    1. Lee MM, Schiefelbein J. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell. 1999;99:473–483. - PubMed

LinkOut - more resources