Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct 15;461(7266):964-7.
doi: 10.1038/nature08439.

Quasicrystalline Order in Self-Assembled Binary Nanoparticle Superlattices

Affiliations

Quasicrystalline Order in Self-Assembled Binary Nanoparticle Superlattices

Dmitri V Talapin et al. Nature. .

Abstract

The discovery of quasicrystals in 1984 changed our view of ordered solids as periodic structures and introduced new long-range-ordered phases lacking any translational symmetry. Quasicrystals permit symmetry operations forbidden in classical crystallography, for example five-, eight-, ten- and 12-fold rotations, yet have sharp diffraction peaks. Intermetallic compounds have been observed to form both metastable and energetically stabilized quasicrystals; quasicrystalline order has also been reported for the tantalum telluride phase with an approximate Ta(1.6)Te composition. Later, quasicrystals were discovered in soft matter, namely supramolecular structures of organic dendrimers and tri-block copolymers, and micrometre-sized colloidal spheres have been arranged into quasicrystalline arrays by using intense laser beams that create quasi-periodic optical standing-wave patterns. Here we show that colloidal inorganic nanoparticles can self-assemble into binary aperiodic superlattices. We observe formation of assemblies with dodecagonal quasicrystalline order in different binary nanoparticle systems: 13.4-nm Fe(2)O(3) and 5-nm Au nanocrystals, 12.6-nm Fe(3)O(4) and 4.7-nm Au nanocrystals, and 9-nm PbS and 3-nm Pd nanocrystals. Such compositional flexibility indicates that the formation of quasicrystalline nanoparticle assemblies does not require a unique combination of interparticle interactions, but is a general sphere-packing phenomenon governed by the entropy and simple interparticle potentials. We also find that dodecagonal quasicrystalline superlattices can form low-defect interfaces with ordinary crystalline binary superlattices, using fragments of (3(3).4(2)) Archimedean tiling as the 'wetting layer' between the periodic and aperiodic phases.

Comment in

Similar articles

See all similar articles

Cited by 59 articles

See all "Cited by" articles

References

    1. Phys Rev Lett. 1993 Apr 5;70(14):2094-2097 - PubMed
    1. Nat Mater. 2004 Nov;3(11):759-67 - PubMed
    1. ACS Nano. 2008 Jun;2(6):1219-29 - PubMed
    1. Nature. 2008 Jul 24;454(7203):420-1 - PubMed
    1. Phys Rev Lett. 1985 Jul 29;55(5):511-513 - PubMed

Publication types

LinkOut - more resources

Feedback