The present study examined the coding of spatial position in object selective cortex. Using functional magnetic resonance imaging (fMRI) and pattern classification analysis, we find that three areas in object selective cortex, the lateral occipital cortex area (LO), the fusiform face area (FFA), and the parahippocampal place area (PPA), robustly code the spatial position of objects. The analysis further revealed several anisotropies (e.g., horizontal/vertical asymmetry) in the representation of visual space in these areas. Finally, we show that the representation of information in these areas permits object category information to be extracted across varying locations in the visual field; a finding that suggests a potential neural solution to accomplishing translation invariance.
Copyright © 2009 Elsevier Srl. All rights reserved.