One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors

Nanotechnology. 2009 Nov 11;20(45):455602. doi: 10.1088/0957-4484/20/45/455602. Epub 2009 Oct 16.

Abstract

A one-step method was developed to fabricate conductive graphene/SnO2 (GS) nanocomposites in acidic solution. Graphite oxides were reduced by SnCl2 to graphene sheets in the presence of HCl and urea. The reducing process was accompanied by generation of SnO2 nanoparticles. The structure and composition of GS nanocomposites were confirmed by means of transmission electron microscopy, x-ray photoelectron and Raman spectroscopy. Moreover, the ultracapacitor characteristics of GS nanocomposites were studied by cyclic voltammograms (CVs) and electrical impedance spectroscopy (EIS). The CVs of GS nanocomposites are nearly rectangular in shape and the specific capacitance degrades slightly as the voltage scan rate is increased. The EIS of GS nanocomposites presents a phase angle close to pi/2 at low frequency, indicating a good capacitive behavior. In addition, the GS nanocomposites could be promisingly applied in many fields such as nanoelectronics, ultracapacitors, sensors, nanocomposites, batteries and gas storage.

Publication types

  • Research Support, Non-U.S. Gov't