Beta-alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise

Eur J Appl Physiol. 2010 Feb;108(3):495-503. doi: 10.1007/s00421-009-1225-0. Epub 2009 Oct 16.

Abstract

The oral ingestion of beta-alanine, the rate-limiting precursor in carnosine synthesis, has been shown to elevate the muscle carnosine content. Carnosine is thought to act as a physiologically relevant pH buffer during exercise but direct evidence is lacking. Acidosis has been hypothesised to influence oxygen uptake kinetics during high-intensity exercise. The present study aimed to investigate whether oral beta-alanine supplementation could reduce acidosis during high-intensity cycling and thereby affect oxygen uptake kinetics. 14 male physical education students participated in this placebo-controlled, double-blind study. Subjects were supplemented orally for 4 weeks with 4.8 g/day placebo or beta-alanine. Before and after supplementation, subjects performed a 6-min cycling exercise bout at an intensity of 50% of the difference between ventilatory threshold (VT) and VO(2peak). Capillary blood samples were taken for determination of pH, lactate, bicarbonate and base excess, and pulmonary oxygen uptake kinetics were determined with a bi-exponential model fitted to the averaged breath-by-breath data of three repetitions. Exercise-induced acidosis was significantly reduced following beta-alanine supplementation compared to placebo, without affecting blood lactate and bicarbonate concentrations. The time delay of the fast component (Td(1)) of the oxygen uptake kinetics was significantly reduced following beta-alanine supplementation compared to placebo, although this did not reduce oxygen deficit. The parameters of the slow component did not differ between groups. These results indicate that chronic beta-alanine supplementation, which presumably increased muscle carnosine content, can attenuate the fall in blood pH during high-intensity exercise. This may contribute to the ergogenic effect of the supplement found in some exercise modes.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acidosis / metabolism
  • Acidosis / physiopathology
  • Acidosis / prevention & control*
  • Adult
  • Blood Gas Analysis
  • Dietary Supplements
  • Dose-Response Relationship, Drug
  • Double-Blind Method
  • Exercise / physiology*
  • Exercise Test
  • Humans
  • Male
  • Muscle, Skeletal / metabolism
  • Oxygen Consumption / drug effects*
  • Oxygen Consumption / physiology
  • Pulmonary Gas Exchange / physiology
  • Time Factors
  • beta-Alanine / administration & dosage
  • beta-Alanine / pharmacology*

Substances

  • beta-Alanine