Chondroitin Sulfate Proteoglycans Regulate the Growth, Differentiation and Migration of Multipotent Neural Precursor Cells Through the Integrin Signaling Pathway

BMC Neurosci. 2009 Oct 21;10:128. doi: 10.1186/1471-2202-10-128.

Abstract

Background: Neural precursor cells (NPCs) are defined by their ability to proliferate, self-renew, and retain the potential to differentiate into neurons and glia. Deciphering the factors that regulate their behaviors will greatly aid in their use as potential therapeutic agents or targets. Chondroitin sulfate proteoglycans (CSPGs) are prominent components of the extracellular matrix (ECM) in the central nervous system (CNS) and are assumed to play important roles in controlling neuronal differentiation and development.

Results: In the present study, we demonstrated that CSPGs were constitutively expressed on the NPCs isolated from the E16 rat embryonic brain. When chondroitinase ABC was used to abolish the function of endogenous CSPGs on NPCs, it induced a series of biological responses including the proliferation, differentiation and migration of NPCs, indicating that CSPGs may play a critical role in NPC development and differentiation. Finally, we provided evidence suggesting that integrin signaling pathway may be involved in the effects of CSPGs on NPCs.

Conclusion: The present study investigating the influence and mechanisms of CSPGs on the differentiation and migration of NPCs should help us to understand the basic biology of NPCs during CNS development and provide new insights into developing new strategies for the treatment of the neurological disorders in the CNS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astrocytes / drug effects
  • Astrocytes / metabolism
  • Blotting, Western
  • Cell Differentiation / drug effects
  • Cell Differentiation / physiology
  • Cell Movement / drug effects
  • Cell Movement / physiology
  • Cell Proliferation / drug effects
  • Cell Shape / drug effects
  • Cell Shape / physiology
  • Cells, Cultured
  • Chondroitin ABC Lyase / pharmacology
  • Chondroitin Sulfate Proteoglycans / metabolism*
  • Flow Cytometry
  • Fluorescent Antibody Technique
  • Integrins / metabolism*
  • Intercellular Signaling Peptides and Proteins
  • Multipotent Stem Cells / cytology
  • Multipotent Stem Cells / metabolism*
  • Neurons / drug effects
  • Neurons / metabolism
  • Oligodendroglia / drug effects
  • Oligodendroglia / metabolism
  • Peptides / pharmacology
  • Platelet Aggregation Inhibitors / pharmacology
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Chondroitin Sulfate Proteoglycans
  • Integrins
  • Intercellular Signaling Peptides and Proteins
  • Peptides
  • Platelet Aggregation Inhibitors
  • echistatin
  • Chondroitin ABC Lyase