Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen

Exp Physiol. 2010 Feb;95(2):351-8. doi: 10.1113/expphysiol.2009.049353. Epub 2009 Oct 23.

Abstract

We have previously demonstrated that well-trained subjects who completed a 3 week training programme in which selected high-intensity interval training (HIT) sessions were commenced with low muscle glycogen content increased the maximal activities of several oxidative enzymes that promote endurance adaptations to a greater extent than subjects who began all training sessions with normal glycogen levels. The aim of the present study was to investigate acute skeletal muscle signalling responses to a single bout of HIT commenced with low or normal muscle glycogen stores in an attempt to elucidate potential mechanism(s) that might underlie our previous observations. Six endurance-trained cyclists/triathletes performed a 100 min ride at approximately 70% peak O(2) uptake (AT) on day 1 and HIT (8 x 5 min work bouts at maximal self-selected effort with 1 min rest) 24 h later (HIGH). Another six subjects, matched for fitness and training history, performed AT on day 1 then 1-2 h later, HIT (LOW). Muscle biopsies were taken before and after HIT. Muscle glycogen concentration was higher in HIGH versus LOW before the HIT (390 +/- 28 versus 256 +/- 67 micromol (g dry wt)(1)). After HIT, glycogen levels were reduced in both groups (P < 0.05) but HIGH was elevated compared with LOW (229 +/- 29 versus 124 +/- 41 micromol (g dry wt)(1); P < 0.05). Phosphorylation of 5 AMP-activated protein kinase (AMPK) increased after HIT, but the magnitude of increase was greater in LOW (P < 0.05). Despite the augmented AMPK response in LOW after HIT, selected downstream AMPK substrates were similar between groups. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was unchanged for both groups before and after the HIT training sessions. We conclude that despite a greater activation AMPK phosphorylation when HIT was commenced with low compared with normal muscle glycogen availability, the localization and phosphorylation state of selected downstream targets of AMPK were similar in response to the two interventions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Glycogen / metabolism*
  • Humans
  • Male
  • Muscle, Skeletal / physiology*
  • Physical Endurance / physiology*
  • Physical Exertion / physiology*
  • Physical Fitness / physiology*
  • Signal Transduction / physiology*
  • Young Adult
  • p38 Mitogen-Activated Protein Kinases / metabolism*

Substances

  • Glycogen
  • p38 Mitogen-Activated Protein Kinases