Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;48(48):9148-51.
doi: 10.1002/anie.200904035.

Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids

Affiliations

Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids

Jiantao Guo et al. Angew Chem Int Ed Engl. 2009.

Abstract

Regions of the M. jannaschii tyrosyl tRNACUA thought to interact with elongation factor Tu were randomized, and the resulting tRNA libraries were subjected to in vitro evolution. The tRNAs identified resulted in significantly improved unnatural amino acid-containing protein yields. In some cases, the degree of improvement varied in an amino acid-dependent manner.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The EF-Tu/tRNA interface. a) Putative M. jannaschii tRNACUATyr nucleotides that interact with EF-Tu are shown in red. Previously mutated positions are shown in green. b) A diagram derived from the T. aquaticus EF-Tu/E. coli cysteinyl-tRNACys X-ray structure showing EF-Tu/tRNA interactions. The tRNA residues that interact with EF-Tu are numbered and shown in red. Interacting residues of EF-Tu are shown in green. Note that all interactions between tRNA and EF-Tu involve the tRNA backbone except in the case of residue 63.
Figure 2
Figure 2
Activity of the 10 best evolved tRNAs with each aaRS shown as fold improvement over MjtRNACUATyr. tRNAs and aaRSs are arranged from right to left in order of increasing yield improvement. Inset shows the region of the main graph between -1- and 5-fold improvement.
Scheme 1
Scheme 1
Structures of amino acids used in this study.

Similar articles

Cited by

References

    1. Select references include: Xie J, Schultz PG. Nat. Rev. Mol. Cell. Biol. 2006;7:775. Lemke EA, Summerer D, Geierstanger BH, Brittain SM, Schultz PG. Nat. Chem. Biol. 2007;3:769. Guo J, Wang J, Anderson JC, Schultz PG. Ang. Chem. 2008;47:722. Brustad E, Bushey ML, Lee JW, Groff D, Liu W, Schultz PG. Ang. Chem. 2008;47:8220. Neumann H, Hazen JL, Weinstein J, Mehl RA, Chin JW. J. Am. Chem. Soc. 2008;130:4028. Neumann H, Peak-Chew SY, Chin JW. Nat. Chem. Biol. 2008;4:232. Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S. Chem. Biol. 2008;15:1187. Peters FB, Brock A, Wang J, Schultz PG. Chem. Biol. 2009;16:148. Li W-T, Mahapatra A, Longstaff DG, Bechtel J, Zhao G, Kang PT, Chan MK, Krzycki JA. J. Mol. Biol. 2009;385:1156. Kobayashi T, Yanagisawa T, Sakamoto K, Yokoyama S. J. Mol. Biol. 2009;385:1352..

    1. LaRiviere FJ, Wolfson AD, Uhlenbeck OC. Science. 2001;294:165. - PubMed
    2. Asahara H, Uhlenbeck OC. Proc. Nat. Acad. Sci. 2002;99:3499. - PMC - PubMed
    3. Dale T, Sanderson LE, Uhlenbeck OC. Biochem. 2004;43:6159. - PubMed
    1. Schrader JM, Chapman SJ, Uhlenbeck OC. J. Mol. Biol. 2009;386:1255. - PMC - PubMed
    2. Eargle J, Black AA, Sethi A, Trabuco LG, Luthey-Schulten Z. J. Mol. Biol. 2008;377:1382. - PMC - PubMed
    3. Forster C, Chakraburtty K, Sprinzl M. Nucl. Acids Res. 1993;21:5679–5683. - PMC - PubMed
    4. Rudinger J, Hillenbrandt R, Sprinzl M, Giege R. EMBO J. 1996;15:650–657. - PMC - PubMed
    1. Dale T, Fahlman RP, Olejniczak M, Uhlenbeck OC. Nucl. Acids Res. 2009;37:1202. - PMC - PubMed
    1. Wang L, Schultz PG. Chem. Biol. 2001;8:883. - PubMed

Publication types

LinkOut - more resources