Purpose of review: This article highlights recent advances in our understanding of glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) physiology and their various sites of action beyond the incretin effect.
Recent findings: Both GLP-1 and GIP stimulate insulin secretion in a glucose-dependent manner and are thus classified as incretins. Beyond glucose-dependent insulin secretion, the peptides have common actions on islet beta cells, leading beta-cell proliferation and resistance to apoptosis. However, the action of GLP-1 and GIP is not limited to the islet cells; they have regulatory functions in many organs. Recent evidence has suggested that GLP-1 has important beneficial effects in the cardiovascular system and central nervous system. GIP may play a role in promoting energy storage in humans, enhances bone formation via stimulation of osteoblast proliferation and inhibition of apoptosis and may play a role in central nervous system function.
Summary: These new findings suggest further application of these hormones for the treatment of conditions such as cardiovascular disease and obesity.