Beta-adrenergic receptor signaling in the heart: role of CaMKII

J Mol Cell Cardiol. 2010 Feb;48(2):322-30. doi: 10.1016/j.yjmcc.2009.10.016. Epub 2009 Oct 31.


The multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) targets a number of Ca(2+) homeostatic proteins and regulates gene transcription. Many of the substrates phosphorylated by CaMKII are also substrates for protein kinase A (PKA), the best known downstream effector of beta-adrenergic receptor (beta-AR) signaling. While PKA and CaMKII are conventionally considered to transduce signals through separate pathways, there is a body of evidence suggesting that CaMKII is activated in response to beta-AR stimulation and that some of the downstream effects of beta-AR stimulation are actually mediated by CaMKII. The signaling pathway through which beta-AR stimulation activates CaMKII, in parallel with or downstream of PKA, is not well-defined. This review considers the evidence for and mechanisms by which CaMKII is activated in response to beta-AR stimulation. In addition the potential role of CaMKII in beta-AR regulation of cardiac function is considered. Notably, although many CaMKII targets (e.g., phospholamban or the ryanodine receptor) are central to the regulation of Ca(2+) handling, and effects of CaMKII on Ca(2+) handling are detectable, inhibition or gene deletion of CaMKII has relatively little effect on the acute physiological contractile response to beta-AR. On the other hand CaMKII expression and activity are increased in heart failure, a pathophysiological condition characterized by chronic stimulation of cardiac beta-ARs. Blockade of beta-ARs is an accepted therapy for treatment of chronic heart failure although the rationale for its beneficial effects in cardiomyocytes is uncertain. There is growing evidence that inhibition or gene deletion of CaMKII also has a significant beneficial impact on the development of heart failure. The possibility that excessive beta-AR stimulation is detrimental because of its effects on CaMKII mediated Ca(2+) handling disturbances (e.g., ryanodine receptor phosphorylation and diastolic SR Ca(2+) leak) is an intriguing hypothesis that merits future consideration.

Publication types

  • Review

MeSH terms

  • Animals
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / metabolism*
  • Enzyme Activation
  • Myocardium / enzymology*
  • Receptors, Adrenergic, beta / metabolism*
  • Signal Transduction*


  • Receptors, Adrenergic, beta
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2