Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction

Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20063-8. doi: 10.1073/pnas.0911028106. Epub 2009 Nov 5.

Abstract

Phosphoinositide-specific phospholipase C (PLC) is a central effector for many biological responses regulated by G-protein-coupled receptors including Drosophila phototransduction where light sensitive channels are activated downstream of NORPA, a PLCbeta homolog. Here we show that the sphingolipid biosynthetic enzyme, ceramide kinase, is a novel regulator of PLC signaling and photoreceptor homeostasis. A mutation in ceramide kinase specifically leads to proteolysis of NORPA, consequent loss of PLC activity, and failure in light signal transduction. The mutant photoreceptors also undergo activity-dependent degeneration. Furthermore, we show that a significant increase in ceramide, resulting from lack of ceramide kinase, perturbs the membrane microenvironment of phosphatidylinositol 4, 5, bisphosphate (PIP(2)), altering its distribution. Fluorescence image correlation spectroscopic studies on model membranes suggest that an increase in ceramide decreases clustering of PIP(2) and its partitioning into ordered membrane domains. Thus ceramide kinase-mediated maintenance of ceramide level is important for the local regulation of PIP(2) and PLC during phototransduction.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Ceramides / metabolism
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster / physiology*
  • Electroretinography
  • Homeostasis
  • Intracellular Membranes / chemistry
  • Intracellular Membranes / metabolism
  • Light
  • Light Signal Transduction / physiology*
  • Mutation
  • Phosphatidylinositol 4,5-Diphosphate / metabolism*
  • Phospholipase C beta / genetics
  • Phospholipase C beta / metabolism
  • Phosphotransferases (Alcohol Group Acceptor) / genetics
  • Phosphotransferases (Alcohol Group Acceptor) / metabolism*
  • Photoreceptor Cells, Invertebrate / physiology
  • Photoreceptor Cells, Invertebrate / ultrastructure
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Signal Transduction / physiology
  • Type C Phospholipases / genetics
  • Type C Phospholipases / metabolism*

Substances

  • Ceramides
  • Drosophila Proteins
  • Phosphatidylinositol 4,5-Diphosphate
  • Recombinant Fusion Proteins
  • Phosphotransferases (Alcohol Group Acceptor)
  • ceramide kinase
  • Type C Phospholipases
  • NorpA protein, Drosophila
  • Phospholipase C beta