Cardiomyocyte H9c2 Cells Exhibit Differential Sensitivity to Intracellular Reactive Oxygen Species Generation with Regard to Their Hypertrophic vs Death Responses to Exogenously Added Hydrogen Peroxide

J Clin Biochem Nutr. 2009 Nov;45(3):361-9. doi: 10.3164/jcbn.09-47. Epub 2009 Oct 28.

Abstract

Many researchers have hypothesized that differences in reactive oxygen species levels can trigger the cellular decision between hypertrophy and cell death in cardiomyocytes. In the present study, we examined the relationship between reactive oxygen species levels and hypertrophy or cell death in H9c2 cardiomyocytes after the addition of hydrogen peroxide. Following addition of hydrogen peroxide, we observed a slight increase in fluorescence intensity of 2',7'-dichlorofluorescein, a probe of intracellular reactive oxygen species, and cell hypertrophy in H9c2 cells (normal cells). In contrast, a dramatic increase in fluorescence intensity was followed by cell death in glutathione-depleted H9c2 cells. In the presence of the antioxidant Trolox or the iron chelator deferoxamine, both normal and glutathione-depleted cells developed hypertrophy without a concomitant increase in levels of reactive oxygen species. An inhibitor of p53, pifithrin-alpha, prevented cell death after the addition of hydrogen peroxide; instead a substantial increase in levels of reactive oxygen species and hypertrophy were observed. These results suggest that H9c2 cells exhibit differential sensitivity to intracellular reactive oxygen species generation with regard to their hypertrophic versus death responses to exogenously added hydrogen peroxide.

Keywords: H2O2; ROS; cardiomyocyte; cell death; hypertrophy.