A remarkable diversity of bone-eating worms (Osedax; Siboglinidae; Annelida)

BMC Biol. 2009 Nov 10:7:74. doi: 10.1186/1741-7007-7-74.

Abstract

Background: Bone-eating Osedax worms have proved to be surprisingly diverse and widespread. Including the initial description of this genus in 2004, five species that live at depths between 25 and 3,000 m in the eastern and western Pacific and in the north Atlantic have been named to date. Here, we provide molecular and morphological evidence for 12 additional evolutionary lineages from Monterey Bay, California. To assess their phylogenetic relationships and possible status as new undescribed species, we examined DNA sequences from two mitochondrial (COI and 16S rRNA) and three nuclear genes (H3, 18S and 28S rRNA).

Results: Phylogenetic analyses identified 17 distinct evolutionary lineages. Levels of sequence divergence among the undescribed lineages were similar to those found among the named species. The 17 lineages clustered into five well-supported clades that also differed for a number of key morphological traits. Attempts to determine the evolutionary age of Osedax depended on prior assumptions about nucleotide substitution rates. According to one scenario involving a molecular clock calibrated for shallow marine invertebrates, Osedax split from its siboglinid relatives about 45 million years ago when archeocete cetaceans first appeared and then diversified during the late Oligocene and early Miocene when toothed and baleen whales appeared. Alternatively, the use of a slower clock calibrated for deep-sea annelids suggested that Osedax split from its siboglinid relatives during the Cretaceous and began to diversify during the Early Paleocene, at least 20 million years before the origin of large marine mammals.

Conclusion: To help resolve uncertainties about the evolutionary age of Osedax, we suggest that the fossilized bones from Cretaceous marine reptiles and late Oligocene cetaceans be examined for possible trace fossils left by Osedax roots. Regardless of the outcome, the present molecular evidence for strong phylogenetic concordance across five separate genes suggests that the undescribed Osedax lineages comprise evolutionarily significant units that have been separate from one another for many millions of years. These data coupled with ongoing morphological analyses provide a solid foundation for their future descriptions as new species.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Nucleus / chemistry
  • DNA, Mitochondrial / analysis
  • Evolution, Molecular*
  • Fossils
  • Genes, rRNA / genetics
  • Pacific Ocean
  • Phylogeny
  • Polychaeta / anatomy & histology
  • Polychaeta / physiology*
  • Sequence Analysis, DNA
  • Species Specificity

Substances

  • DNA, Mitochondrial