Protein recognition in ferredoxin-P450 electron transfer in the class I CYP199A2 system from Rhodopseudomonas palustris

J Biol Inorg Chem. 2010 Mar;15(3):315-28. doi: 10.1007/s00775-009-0604-7. Epub 2009 Nov 11.


CYP199A2 from Rhodopseudomonas palustris CGA009 is a heme monooxygenase that catalyzes the oxidation of para-substituted benzoic acids. CYP199A2 activity is reconstituted by a class I electron transfer chain consisting of the associated [2Fe-2S] ferredoxin palustrisredoxin (Pux) and a flavoprotein palustrisredoxin reductase (PuR). Another [2Fe-2S] ferredoxin, palustrisredoxin B (PuxB; RPA3956) has been identified in the genome. PuxB shares sequence identity and motifs with vertebrate-type ferredoxins involved in Fe-S cluster assembly but also 50% identity with Pux and it mediates electron transfer from PuR to CYP199A2, albeit with lower steady-state turnover activity: 99 nmol (nmol P450)(-1)min(-1) for 4-methoxybenzoic acid oxidation compared with 1,438 nmol (nmol P450)(-1 )min(-1) for Pux. This difference mainly arises from weak CYP199A2-PuxB binding (K (m) 34.3 vs. 0.45 microM for Pux) rather than slow electron transfer (k (cat) 19.1 vs. 37.9 s(-1) for Pux). Comparison of the 2.0-A-resolution crystal structure of the PuxB A105R mutant with other vertebrate-type, P450-associated ferredoxins revealed similar protein folds but also significant differences in some loop regions. Therefore, PuxB offers a platform for studying ferredoxin-P450 recognition in class I P450 systems. Substitution of PuxB residues at key locations with those in Pux shows that Ala42, Cys43, and Ala44 in the [2Fe-2S] cluster binding loop and Met66 are important in electron transfer from PuxB to CYP199A2, whereas Phe73 and the C-terminal Ala105 were involved in both protein binding and electron transfer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Crystallography, X-Ray
  • Cytochrome P-450 Enzyme System / metabolism*
  • Electron Transport
  • Ferredoxins / chemistry*
  • Ferredoxins / genetics
  • Ferredoxins / metabolism*
  • Models, Molecular
  • Molecular Sequence Data
  • Mutation
  • Protein Structure, Secondary
  • Rhodopseudomonas / chemistry
  • Rhodopseudomonas / metabolism*
  • Sequence Alignment


  • 2Fe-2S ferredoxin
  • Bacterial Proteins
  • Ferredoxins
  • Cytochrome P-450 Enzyme System