Modulation of synaptic plasticity by brain estrogen in the hippocampus

Biochim Biophys Acta. 2010 Oct;1800(10):1030-44. doi: 10.1016/j.bbagen.2009.11.002. Epub 2009 Nov 10.

Abstract

The hippocampus is a center for learning and memory as well as a target of Alzheimer's disease in aged humans. Synaptic modulation by estrogen is essential to understand the molecular mechanisms of estrogen replacement therapy. Because the local synthesis of estrogen occurs in the hippocampus of both sexes, in addition to the estrogen supply from the gonads, its functions are attracting much attention. Hippocampal estrogen modulates memory-related synaptic plasticity not only slowly but also rapidly. Slow actions of 17ß-estradiol (17ß-E2) occur via classical nuclear receptors (ERα or ERß), while rapid E2 actions occur via synapse-localized ERα or ERß. Elevation or decrease of the E2 concentration changes rapidly the density and morphology of spines in CA1-CA3 neurons. ERα, but not ERß, drives this enhancement/suppression of spinogenesis. Kinase networks are involved downstream of ERα. The long-term depression but not the long-term potentiation is modulated rapidly by changes of E2 level. Determination of the E2 concentration in the hippocampus is enabled by mass-spectrometry in combination with derivatization methods. The E2 level in the hippocampus is as high as approx. 8 nM for the male and 0.5-2 nM for the female, which is much higher than that in circulation. Therefore, hippocampus-derived E2 plays a major role in modulation of synaptic plasticity. Many hippocampal slice experiments measure the restorative effects of E2 by supplementation of E2 to E2-depleted slices. Accordingly, isolated slice experiments can be used as in vitro models of in vivo estrogen replacement therapy for ovariectomized female animals with depleted circulating estrogen.

Publication types

  • Review

MeSH terms

  • Animals
  • Estradiol / metabolism*
  • Estrogen Receptor alpha / metabolism
  • Estrogen Receptor beta / metabolism
  • Estrogens / metabolism*
  • Female
  • Hippocampus / cytology
  • Hippocampus / metabolism*
  • Humans
  • Male
  • Neuronal Plasticity / physiology*
  • Neurons / cytology
  • Neurons / metabolism*
  • Synapses / metabolism*

Substances

  • ESR1 protein, human
  • Estrogen Receptor alpha
  • Estrogen Receptor beta
  • Estrogens
  • Estradiol