Mechanics of the F-actin cytoskeleton

J Biomech. 2010 Jan 5;43(1):9-14. doi: 10.1016/j.jbiomech.2009.09.003. Epub 2009 Nov 13.

Abstract

Dynamic regulation of the filamentous actin (F-actin) cytoskeleton is critical to numerous physical cellular processes, including cell adhesion, migration and division. Each of these processes require precise regulation of cell shape and mechanical force generation which, to a large degree, is regulated by the dynamic mechanical behaviors of a diverse assortment of F-actin networks and bundles. In this review, we review the current understanding of the mechanics of F-actin networks and identify areas of further research needed to establish physical models. We first review our understanding of the mechanical behaviors of F-actin networks reconstituted in vitro, with a focus on the nonlinear mechanical response and behavior of "active" F-actin networks. We then explore the types of mechanical response measured of cytoskeletal F-actin networks and bundles formed in living cells and identify how these measurements correspond to those performed on reconstituted F-actin networks formed in vitro. Together, these approaches identify the challenges and opportunities in the study of living cytoskeletal matter.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Actin Cytoskeleton / physiology
  • Actins / physiology*
  • Animals
  • Cytoskeleton / physiology*
  • Elasticity
  • Humans
  • Microtubules / physiology
  • Stress, Mechanical

Substances

  • Actins