Estrogen-mediated regulation of Igf1 transcription and uterine growth involves direct binding of estrogen receptor alpha to estrogen-responsive elements

J Biol Chem. 2010 Jan 22;285(4):2676-85. doi: 10.1074/jbc.M109.043471. Epub 2009 Nov 17.

Abstract

Estrogen enables uterine proliferation, which depends on synthesis of the IGF1 growth factor. This proliferation and IGF1 synthesis requires the estrogen receptor (ER), which binds directly to target DNA sequences (estrogen-responsive elements or EREs), or interacts with other transcription factors, such as AP1, to impact transcription. We observe neither uterine growth nor an increase in Igf1 transcript in a mouse with a DNA-binding mutated ER alpha (KIKO), indicating that both Igf1 regulation and uterine proliferation require the DNA binding function of the ER. We identified several potential EREs in the Igf1 gene, and chromatin immunoprecipitation analysis revealed ER alpha binding to these EREs in wild type but not KIKO chromatin. STAT5 is also reported to regulate Igf1; uterine Stat5a transcript is increased by estradiol (E(2)), but not in KIKO or alpha ERKO uteri, indicating ER alpha- and ERE-dependent regulation. ER alpha binds to a potential Stat5a ERE. We hypothesize that E(2) increases Stat5a transcript through ERE binding; that ER alpha, either alone or together with STAT5, then acts to increase Igf1 transcription; and that the resulting lack of IGF1 impairs KIKO uterine growth. Treatment with exogenous IGF1, alone or in combination with E(2), induces proliferation in wild type but not KIKO uteri, indicating that IGF1 replacement does not rescue the KIKO proliferative response. Together, these observations suggest in contrast to previous in vitro studies of IGF-1 regulation involving AP1 motifs that direct ER alpha-DNA interaction is required to increase Igf1 transcription. Additionally, full ER alpha function is needed to mediate other cellular signals of the growth factor for uterine growth.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • Cell Division / drug effects
  • Cell Division / physiology
  • Epithelial Cells / cytology
  • Estrogen Receptor alpha / genetics
  • Estrogen Receptor alpha / metabolism*
  • Estrogens / metabolism*
  • Female
  • Gene Expression Regulation / physiology
  • Humans
  • Insulin-Like Growth Factor I / genetics*
  • Insulin-Like Growth Factor I / pharmacology
  • Introns / physiology
  • Male
  • Mice
  • Mice, Knockout
  • Promoter Regions, Genetic / physiology
  • Response Elements / physiology
  • STAT5 Transcription Factor / genetics
  • STAT5 Transcription Factor / metabolism
  • Transcription, Genetic / physiology
  • Uterus / cytology
  • Uterus / growth & development*
  • Uterus / physiology*

Substances

  • Estrogen Receptor alpha
  • Estrogens
  • STAT5 Transcription Factor
  • Stat5a protein, mouse
  • insulin-like growth factor-1, mouse
  • Insulin-Like Growth Factor I