RIPK1 is not essential for TNFR1-induced activation of NF-kappaB

Cell Death Differ. 2010 Mar;17(3):482-7. doi: 10.1038/cdd.2009.178. Epub 2009 Nov 20.

Abstract

On TNF binding, receptor-interacting protein kinase 1 (RIPK1) is recruited to the cytoplasmic domain of TNFR1, at which it becomes ubiquitylated and serves as a platform for recruitment and activation of NEMO/IKK1/IKK2 and TAK1/TAB2. RIPK1 is commonly thought to be required for the activation of canonical NF-kappaB and for inhibition TNFR1-induced apoptosis. RIPK1 has, however, also been reported to be essential for TNFR1-induced apoptosis when cIAPs are depleted. To determine the role of RIPK1 in TNF/IAP antagonist-induced death, we compared wild type (WT) and RIPK1(-/-) mouse embryonic fibroblasts (MEFs) treated with these compounds. On being treated with TNF plus IAP antagonist, RIPK1(-/-) MEFs survived, unlike WT MEFs, demonstrating a killing activity of RIPK1. Surprisingly, however, on being treated with TNF alone, RIPK1(-/-) MEFs activated canonical NF-kappaB and did not die. Furthermore, several cell types from E18 RIPK1(-/-) embryos seem to activate NF-kappaB in response to TNF. These data indicate that models proposing that RIPK1 is essential for TNFR1 to activate canonical NF-kappaB are incorrect.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Fibroblasts / cytology
  • Fibroblasts / physiology
  • Mice
  • Mice, Knockout
  • NF-kappa B / genetics
  • NF-kappa B / metabolism*
  • Receptor-Interacting Protein Serine-Threonine Kinases / genetics
  • Receptor-Interacting Protein Serine-Threonine Kinases / metabolism*
  • Receptors, Tumor Necrosis Factor, Type I / genetics
  • Receptors, Tumor Necrosis Factor, Type I / metabolism*
  • Signal Transduction / physiology

Substances

  • NF-kappa B
  • Receptors, Tumor Necrosis Factor, Type I
  • Receptor-Interacting Protein Serine-Threonine Kinases