Energy analysis of wrist impact and surface rebound

Comput Methods Biomech Biomed Engin. 2010 Oct;13(5):559-66. doi: 10.1080/10255840903337863.

Abstract

The mechanical interactions during impact of a falling human body onto a non-rigid surface are complex. Mechanical properties of both the impacting body and the impacted surface contribute to risk of injury. Increased understanding of these properties should provide insight into the process and how to reduce injury risk. We assessed whether modelling energy flows in the body during impact can provide useful information. As input, we used data from gymnastic tumbling mats and from children performing an exercise involving freefall onto an outstretched arm. Even basic energy transfer principles provided information not discerned by the mechanical approach traditionally used. The model identified differences between surfaces in how energy flowed through an arm and the strains imposed on the wrist during impact and rebound. Therefore, it shows promise for identifying potentially injurious human-surface interactions. Analysis of other human impact situations, and the relationship between the energy flow and injury risk, is planned.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • Humans
  • Wrist / physiology*