In vivo biologic and immunohistochemical analysis of interleukin-1 alpha, beta and tumor necrosis factor during experimental endotoxemia. Kinetics, Kupffer cell expression, and glucocorticoid effects

Am J Pathol. 1991 Feb;138(2):395-402.


Using a model of sepsis induced by parenteral challenge of mice with bacterial lipopolysaccharide (LPS), the authors analyzed the in vivo expression of interleukin-1 (IL-1) alpha,beta and tumor necrosis factor (TNF). Both TNF and IL-1 alpha,beta were detected in hepatic sinusoidal macrophages (Kupffer cells), immunohistochemically. Kinetic analysis showed a clear sequence of synthesis. Tumor necrosis factor was produced first, reaching maximal expression at 1 hour after LPS challenge, then rapidly disappeared. IL-1 beta followed, reaching maximal expression at 2 to 3 hours, then dropped off by 6 hours. Interleukin-1 alpha expression reached a peak at 6 hours and had disappeared by 18 hours. Analysis of serum bioactivity also revealed sequential expression that correlated with immunohistochemical findings. Tumor necrosis factor was maximal at 1 hour and IL-1 at 6 hours. The IL-1 bioactivity was not due to interleukin-6 (IL-6), as this was depleted from specimens by immunoabsorption. Also IL-6 bioactivity reached maximal levels at 3 hours, earlier than IL-1. Pretreatment with 4 mg/kg dexamethasone significantly decreased Kupffer cell expression of TNF and IL-1 alpha (about 80% and 60% suppression, respectively) but had less effect on IL-1 beta expression (about 30% suppression). Accordingly, serum levels of TNF were suppressed by 75% while serum IL-1 was decreased by 39%, indicating differential sensitivity of these cytokines to glucocorticoids. Endogenous corticosteroid levels increased as TNF levels decreased, supporting the contention that glucocorticoids regulate TNF synthesis. In contrast, IL-1 levels rose concurrently with corticosterone. These data indicate a sequential activation of cytokine gene expression in vivo, which may be critical to the cascade of events leading to septic shock, and provide evidence that Kupffer cells are a major source of cytokines in endotoxemia. Finally, the differential sensitivity of cytokine expression to glucocorticoids may in part explain the inadequacy of the latter in the treatment of sepsis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Corticosterone / blood
  • Dexamethasone / pharmacology*
  • Endotoxins / blood*
  • Escherichia coli*
  • Immunohistochemistry
  • Interleukin-1 / blood
  • Interleukin-1 / metabolism*
  • Interleukin-6 / blood
  • Kinetics
  • Kupffer Cells / metabolism*
  • Lipopolysaccharides / pharmacology
  • Mice
  • Mice, Inbred Strains
  • Tumor Necrosis Factor-alpha / metabolism*


  • Endotoxins
  • Interleukin-1
  • Interleukin-6
  • Lipopolysaccharides
  • Tumor Necrosis Factor-alpha
  • Dexamethasone
  • Corticosterone