Genome-based phylogenetic analysis of Streptomyces and its relatives

Mol Phylogenet Evol. 2010 Mar;54(3):763-72. doi: 10.1016/j.ympev.2009.11.019. Epub 2009 Dec 3.

Abstract

Motivation: Streptomyces is one of the best-studied genera of the order Actinomycetales due to its great importance in medical science, ecology and the biotechnology industry. A comprehensive, detailed and robust phylogeny of Streptomyces and its relatives is needed for understanding how this group emerged and maintained such a vast diversity throughout evolution and how soil-living mycelial forms (e.g., Streptomyces s. str.) are related to parasitic, unicellular pathogens (e.g., Mycobacterium tuberculosis) or marine species (e.g., Salinispora tropica). The most important application area of such a phylogenetic analysis will be in the comparative re-annotation of genome sequences and the reconstruction of Streptomyces metabolic networks for biotechnology.

Methods: Classical 16S-rRNA-based phylogenetic reconstruction does not guarantee to produce well-resolved robust trees that reflect the overall relationship between bacterial species with widespread horizontal gene transfer. In our study we therefore combine three whole genome-based phylogenies with eight different, highly informative single-gene phylogenies to determine a new robust consensus tree of 45 Actinomycetales species with completely sequenced genomes.

Results: None of the individual methods achieved a resolved phylogeny of Streptomyces and its relatives. Single-gene approaches failed to yield a detailed phylogeny; even though the single trees are in good agreement among each other, they show very low resolution of inner branches. The three whole genome-based methods improve resolution considerably. Only by combining the phylogenies from single gene-based and genome-based approaches we finally obtained a consensus tree with well-resolved branches for the entire set of Actinomycetales species. This phylogenetic information is stable and informative enough for application to the system-wide comparative modeling of bacterial physiology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Order
  • Genes, Bacterial
  • Genome, Bacterial*
  • Genomics / methods*
  • Phylogeny*
  • RNA, Bacterial / genetics
  • RNA, Ribosomal / genetics
  • Sequence Analysis, DNA
  • Streptomyces / classification*
  • Streptomyces / genetics

Substances

  • RNA, Bacterial
  • RNA, Ribosomal