Although several different enzymes with 5'-nucleotidase activity have been described in mammalian cells, their functions in nucleotide metabolism have not been clearly distinguished. In the present experiments, a mutant human T lymphoblastoid cell line (CEM-dAdoR) was selected specifically for resistance to deoxyadenosine toxicity. Compared to parental CEM cells, the variant had 4-fold elevated ATP-activated cytosolic 5'-nucleotidase activity. Other enzymes of potential importance for deoxyadenosine metabolism were indistinguishable in the two cell types. In medium supplemented with the adenosine deaminase inhibitor deoxycoformycin, the T cells with increased 5'-nucleotidase accumulated less nucleotides from exogenously added deoxyadenosine, or 9-beta-D-arabinofuranosyladenine, than did parental T lymphocytes. These metabolic changes were associated with resistance to the growth inhibitory effects of these nucleosides, and also to deoxyguanosine and to 9-beta-D-arabinofuranosylguanine. The T cells with elevated 5'-nucleotidase activity formed more 2',3'-dideoxyadenosine than did parental cells, in deoxycoformycin-supplemented medium. The accumulation of 2',3'-dideoxyadenosine 5'-triphosphate from 2',3'-dideoxyinosine was similarly augmented in the mutant. These data establish the importance of the cytosolic 5'-nucleotidase for the metabolism of purine 2'-deoxyribonucleosides, arabinonucleosides and 2',3'-dideoxyribonucleosides in T lymphoblasts.