Spatial Segregation of Phosphatidylinositol 4,5-Bisphosphate (PIP(2)) Signaling in Immune Cell Functions

Immunol Endocr Metab Agents Med Chem. 2008 Dec 1;8(4):349-357. doi: 10.2174/187152208787169233.


Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is a prevalent phosphoinositide in the inner leaflet of the plasma membrane. PIP(2) associates with an ever-growing list of proteins, and participates in a variety of cellular processes. PIP(2) signaling to the actin cytoskeleton transduces specific signals necessary for changes in morphology, motility, endocytosis, exocytosis, phagocytosis, and cell activation. The mechanism(s) by which PIP(2) signaling pathways are specific is a topic of intense investigation. One working model is the compartmentalization of PIP(2)-mediated signaling by concentrating PIP(2) in cholesterol-dependent membrane rafts, therefore providing spatial and temporal regulation. Here we discuss properties of PIP(2) signaling to the actin cytoskeleton in immune cell functioning, the association of PIP(2) cellular pools with membrane rafts, and recent work investigating models for compartmentalization of PIP(2)-mediated signaling in membrane rafts to the actin cytoskeleton.