Development of a finger biomechanical model and its considerations

J Biomech. 2010 Mar 3;43(4):701-13. doi: 10.1016/j.jbiomech.2009.10.020. Epub 2009 Dec 3.

Abstract

The development of a biomechanical model for a human finger is faced with many challenges, such as extensor mechanism complexity, statistical indeterminacy and suitability of computational processes. Motivation for this work was to develop a computer model that is able to predict the internal loading patterns of tendons and joint surfaces experienced by the human finger, while mitigating these challenges. Proposed methodology was based on a non-linear optimising mathematical technique with a criterion of boundary conditions and equality equations, maximised against unknown parameters to reduce statistical indeterminacy. Initial validation was performed via the simulation of one dynamic and two static postures case studies. Past models and experiments were used, based on published literature, to verify the proposed model's methodology and results. The feasibility of the proposed methodology was deemed satisfactory as the simulated results were concordant with in-vivo results for the extrinsic flexors.

MeSH terms

  • Computer Simulation
  • Finger Joint / physiology*
  • Finger Phalanges / physiology*
  • Fingers / physiology*
  • Humans
  • Models, Biological*
  • Movement / physiology*
  • Muscle Contraction / physiology*
  • Muscle, Skeletal / physiology*