Extensive beef production systems on pasture are promoted to improve animal welfare and beef quality. This study aimed to compare the influence on muscle characteristics of two management approaches representative of intensive and extensive production systems. One group of 6 Charolais steers was fed maize-silage indoors and another group of 6 Charolais steers grazed on pasture. Activities of enzymes representative of glycolytic and oxidative (Isocitrate dehydrogenase [ICDH], citrate synthase [CS], hydroxyacyl-CoA dehydrogenase [HAD]) muscle metabolism were assessed in Rectus abdominis (RA) and Semitendinosus (ST) muscles. Activities of oxidative enzymes ICDH, CS and HAD were higher in muscles from grazing animals demonstrating a plasticity of muscle metabolism according to the production and feeding system. Gene expression profiling in RA and ST muscles was performed on both production groups using a multi-tissue bovine cDNA repertoire. Variance analysis showed an effect of the muscle type and of the production system on gene expression (P<0.001). A list of the 212 most variable genes according to the production system was established, of which 149 genes corresponded to identified genes. They were classified according to their gene function annotation mainly in the "protein metabolism and modification", "signal transduction", "cell cycle", "developmental processes" and "muscle contraction" biological processes. Selenoprotein W was found to be underexpressed in pasture-fed animals and could be proposed as a putative gene marker of the grass-based system. In conclusion, enzyme-specific adaptations and gene expression modifications were observed in response to the production system and some of them could be candidates for grazing or grass-feeding traceability.