NCLX is an essential component of mitochondrial Na+/Ca2+ exchange

Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):436-41. doi: 10.1073/pnas.0908099107. Epub 2009 Dec 15.

Abstract

Mitochondrial Ca(2+) efflux is linked to numerous cellular activities and pathophysiological processes. Although it is established that an Na(+)-dependent mechanism mediates mitochondrial Ca(2+) efflux, the molecular identity of this transporter has remained elusive. Here we show that the Na(+)/Ca(2+) exchanger NCLX is enriched in mitochondria, where it is localized to the cristae. Employing Ca(2+) and Na(+) fluorescent imaging, we demonstrate that mitochondrial Na(+)-dependent Ca(2+) efflux is enhanced upon overexpression of NCLX, is reduced by silencing of NCLX expression by siRNA, and is fully rescued by the concomitant expression of heterologous NCLX. NCLX-mediated mitochondrial Ca(2+) transport was inhibited, moreover, by CGP-37157 and exhibited Li(+) dependence, both hallmarks of mitochondrial Na(+)-dependent Ca(2+) efflux. Finally, NCLX-mediated mitochondrial Ca(2+) exchange is blocked in cells expressing a catalytically inactive NCLX mutant. Taken together, our results converge to the conclusion that NCLX is the long-sought mitochondrial Na(+)/Ca(2+) exchanger.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / cytology
  • Brain / metabolism
  • Calcium / metabolism*
  • Clonazepam / analogs & derivatives
  • Clonazepam / metabolism
  • Homeostasis
  • Humans
  • Mice
  • Mitochondria / metabolism*
  • Mitochondria / ultrastructure
  • Mitochondrial Membranes / metabolism
  • Mitochondrial Membranes / ultrastructure
  • Myocardium / cytology
  • Myocardium / metabolism
  • Rats
  • Sodium / metabolism*
  • Sodium-Calcium Exchanger / antagonists & inhibitors
  • Sodium-Calcium Exchanger / genetics
  • Sodium-Calcium Exchanger / metabolism*
  • Thiazepines / metabolism

Substances

  • Sodium-Calcium Exchanger
  • Thiazepines
  • Clonazepam
  • CGP 37157
  • Sodium
  • Calcium