Regulating alternative lifestyles in entomopathogenic bacteria
- PMID: 20022247
- PMCID: PMC2821981
- DOI: 10.1016/j.cub.2009.10.059
Regulating alternative lifestyles in entomopathogenic bacteria
Abstract
Bacteria belonging to the genera Photorhabdus and Xenorhabdus participate in a trilateral symbiosis in which they enable their nematode hosts to parasitize insect larvae. The bacteria switch from persisting peacefully in a nematode's digestive tract to a lifestyle in which pathways to produce insecticidal toxins, degrading enzymes to digest the insect for consumption, and antibiotics to ward off bacterial and fungal competitors are activated. This study addresses three questions: (1) What molecular signal triggers antibiotic production in the bacteria? (2) What small molecules are regulated by the signal? And (3), how do the bacteria recognize the signal? Differential metabolomic profiling in Photorhabdus luminescens TT01 and Xenorhabdus nematophila revealed that L-proline in the insect's hemolymph initiates a metabolic shift. Small molecules known to be crucial for virulence and antibiosis in addition to previously unknown metabolites are dramatically upregulated by L-proline, linking the recognition of host environment to bacterial metabolic regulation. To identify the L-proline-induced signaling pathway, we deleted the proline transporters putP and proU in P. luminescens TT01. Studies of these strains support a model in which acquisition of L-proline both regulates the metabolic shift and maintains the bacterial proton motive force that ultimately regulates the downstream bacterial pathways affecting virulence and antibiotic production.
Copyright 2010 Elsevier Ltd. All rights reserved.
Figures
Comment in
-
Host-pathogen interactions: proline gives insect pathogens the green light.Curr Biol. 2010 Jan 12;20(1):R13-5. doi: 10.1016/j.cub.2009.11.018. Curr Biol. 2010. PMID: 20152135
Similar articles
-
The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes.PLoS One. 2011;6(11):e27909. doi: 10.1371/journal.pone.0027909. Epub 2011 Nov 18. PLoS One. 2011. PMID: 22125637 Free PMC article.
-
Refining the Natural Product Repertoire in Entomopathogenic Bacteria.Trends Microbiol. 2018 Oct;26(10):833-840. doi: 10.1016/j.tim.2018.04.007. Epub 2018 May 22. Trends Microbiol. 2018. PMID: 29801772 Review.
-
The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: a review.Parasit Vectors. 2020 Jul 29;13(1):376. doi: 10.1186/s13071-020-04236-6. Parasit Vectors. 2020. PMID: 32727530 Free PMC article. Review.
-
Virulent secondary metabolites of entomopathogenic bacteria genera, Xenorhabdus and Photorhabdus, inhibit phospholipase A2 to suppress host insect immunity.BMC Microbiol. 2020 Nov 23;20(1):359. doi: 10.1186/s12866-020-02042-9. BMC Microbiol. 2020. PMID: 33228536 Free PMC article.
-
Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens.Mol Immunol. 2010 Aug;47(14):2342-8. doi: 10.1016/j.molimm.2010.05.012. Epub 2010 Jun 2. Mol Immunol. 2010. PMID: 20627393
Cited by
-
Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae.BMC Genomics. 2015 Jul 18;16(1):531. doi: 10.1186/s12864-015-1697-8. BMC Genomics. 2015. PMID: 26187596 Free PMC article.
-
Animals in a bacterial world: opportunities for chemical ecology.Nat Prod Rep. 2015 Jul;32(7):888-92. doi: 10.1039/c4np00141a. Nat Prod Rep. 2015. PMID: 25656944 Free PMC article. Review.
-
NRPS substrate promiscuity diversifies the xenematides.Org Lett. 2011 Oct 7;13(19):5144-7. doi: 10.1021/ol2020237. Epub 2011 Sep 2. Org Lett. 2011. PMID: 21888371 Free PMC article.
-
Mass Production of the Beneficial Nematode Heterorhabditis bacteriophora and Its Bacterial Symbiont Photorhabdus luminescens.Indian J Microbiol. 2012 Sep;52(3):316-24. doi: 10.1007/s12088-012-0270-2. Epub 2012 Apr 8. Indian J Microbiol. 2012. PMID: 23997319 Free PMC article.
-
Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli.J Bacteriol. 2015 Feb;197(3):431-40. doi: 10.1128/JB.02282-14. Epub 2014 Nov 10. J Bacteriol. 2015. PMID: 25384482 Free PMC article.
References
-
- Goodrich-Blair H, Clarke DJ. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol. Microbiol. 2007;64:260–268. - PubMed
-
- Waterfield NR, Ciche T, Clarke DJ. Photorhabdus and a host of hosts. Annu. Rev. Microbiol. 2009;63:557–574. - PubMed
-
- Bode HB. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 2009;13:224–230. - PubMed
-
- Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nature Biotechnol. 2003;21:1307–1313. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
