A mathematical model for predicting the viability of airborne viruses

J Virol Methods. 2010 Mar;164(1-2):88-95. doi: 10.1016/j.jviromet.2009.12.004. Epub 2009 Dec 16.


A mathematical model was developed to predict the viability of airborne viruses. The model uses water activity as the primary independent variable and an exponential decay function for the viability of the virus. This model was tested using published experimental data obtained by different investigators for influenza, Langat and polio viruses. The aerosolized media were modelled as a binary solution of water and sodium chloride. The water activity is related directly to the solute concentration in the binary solution. The minimum viability usually occurred just above the efflorescence point, which is the relative humidity at which the solution crystallizes. The relationship between water activity and relative humidity is based on the Köhler theory, whereby the Kelvin term was taken into account. Physical explanations are provided on the variation of viral viability at different relative humidity levels. The predictions obtained by the proposed mathematical model compare well with most of the published experimental data.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aerosols
  • Air Microbiology*
  • Animals
  • Chick Embryo
  • Encephalitis Viruses, Tick-Borne / physiology
  • Humans
  • Microbial Viability*
  • Models, Theoretical
  • Orthomyxoviridae / physiology
  • Poliovirus / physiology
  • Salts
  • Virus Physiological Phenomena*
  • Water Microbiology


  • Aerosols
  • Salts