Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;85(3):504-11.
doi: 10.1016/j.antiviral.2009.12.007. Epub 2009 Dec 24.

ISG15 over-expression inhibits replication of the Japanese encephalitis virus in human medulloblastoma cells

Affiliations

ISG15 over-expression inhibits replication of the Japanese encephalitis virus in human medulloblastoma cells

Nai-Wan Hsiao et al. Antiviral Res. 2010 Mar.

Abstract

IFN-stimulated gene 15 (ISG15), an ubiquitin-like protein, is rapidly induced by IFN-alpha/beta, and ISG15 conjugation is associated with the antiviral immune response. Japanese encephalitis virus (JEV), a mosquito-borne neurotropic flavivirus, causes severe central nervous system diseases. We investigated the potential anti-JEV effect of ISG15 over-expression. ISG15 over-expression in human medulloblastoma cells significantly reduced the JEV-induced cytopathic effect and inhibited JEV replication by reducing the viral titers and genomes (p<0.05, Student's t-test); it also increased activation of the interferon stimulatory response element (ISRE)-luciferase cis-acting reporter in JEV-infected cells (p<0.05, Chi-square test). Furthermore, Western blotting revealed that ISG15 over-expression increased phosphorylation of IRF-3 (Ser396), JAK2 (Tyr1007/1008) and STAT1 (Tyr701 and Ser727) in JEV-infected cells (P<0.05, Chi-square test). Confocal imaging indicated that nucleus translocation of transcription factor STAT1 occurred in ISG15-over-expressing cells but not in vector control cells post-JEV infection. ISG15 over-expression activated the expression of STAT1-dependent genes including IRF-3, IFN-beta, IL-8, PKR and OAS before and post-JEV infection (p=0.063, Student's t-test). The results enabled elucidation of the molecular mechanism of ISG15 over-expression against JEV, which will be useful for developing a novel treatment to combat JEV infection.

PubMed Disclaimer

Similar articles

Cited by

Publication types