Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height

J Am Chem Soc. 2010 Jan 27;132(3):1087-97. doi: 10.1021/ja908340j.

Abstract

Iron(IV)-oxo species have been characterized in several nonheme enzymes and biomimetic systems and are efficient oxidants of aliphatic hydroxylation reactions. However, there appears to be a large variation in substrate hydroxylation ability by different iron(IV)-oxo oxidants due to the effect of the ligands bound to the metal. In this work, we have studied these indirect effects of ligands perpendicular (cis or equatorial) and opposite (trans or axial) to the iron(IV)-oxo group in heme and nonheme oxidants on the oxygenation capability of the oxidant. To this end, we have done a series of density functional theory calculations on the hydrogen atom abstraction of propene by a range of different iron(IV)-oxo oxidants that include heme and nonheme iron(IV)-oxo oxidants. We show that the hydrogen atom abstraction barrier of substrate hydroxylation correlates linearly with the strength of the Fe(III)O-H bond that is formed, i.e., BDE(OH), and that this value ranges by at least 20 kcal mol(-1) dependent on the cis- and trans-ligands attached to the metal. Thus, our studies show that ligands bound to the metal are noninnocent and influence the catalytic properties of the metal-oxo group dramatically due to involvement into the high-lying occupied and virtual orbitals. A general valence bond curve crossing model is set up that explains how the rate constant of hydrogen atom abstraction is proportional to the difference in energy of the C-H bond of the substrate that is broken and the O-H bond of the Fe(III)O-H complex that is formed, i.e., proportional to BDE(CH) - BDE(OH) or the reaction enthalpy. In addition, we show a correlation between the polarizability change and barrier height for the hydrogen atom abstraction reaction.

MeSH terms

  • Computer Simulation
  • Heme / chemistry*
  • Hydroxylation
  • Iron / chemistry*
  • Ligands
  • Models, Chemical
  • Oxidants / chemistry*
  • Oxidation-Reduction
  • Thermodynamics

Substances

  • Ligands
  • Oxidants
  • Heme
  • Iron