Background: Testicular germ cell tumour (TGCT) is the most common malignant tumour in young males. Although aberrant DNA methylation is implicated in the pathophysiology of many cancers, only a limited number of genes are known to be epigenetically changed in TGCT. This report documents the genome-wide analysis of differential methylation in an in vitro model culture system. Interesting genes were validated in TGCT patient samples.
Methods: In this study, we used methylated DNA immunoprecipitation (MeDIP) and whole-genome tiling arrays to identify differentially methylated regions (DMRs).
Results: We identified 35 208 DMRs. However, only a small number of DMRs mapped to promoters. A genome-wide analysis of gene expression revealed a group of differentially expressed genes that were regulated by DNA methylation. We identified several candidate genes, including APOLD1, PCDH10 and RGAG1, which were dysregulated in TGCT patient samples. Surprisingly, APOLD1 had previously been mapped to the TGCT susceptibility locus at 12p13.1, suggesting that it may be important in TGCT pathogenesis. We also observed aberrant methylation in the loci of some non-coding RNAs (ncRNAs). One of the ncRNAs, hsa-mir-199a, was downregulated in TGCT patient samples, and also in our in vitro model culture system.
Conclusion: This report is the first application of MeDIP-chip for identifying epigenetically regulated genes and ncRNAs in TGCT. We also demonstrated the function of intergenic and intronic DMRs in the regulation of ncRNAs.