Oxide surface science

Annu Rev Phys Chem. 2010;61:129-48. doi: 10.1146/annurev.physchem.012809.103254.


Most metals are oxidized under ambient conditions, and metal oxides show interesting and technologically promising properties. This has motivated much recent research on oxide surfaces. The combination of scanning tunneling microscopy with first-principles density functional theory-based computational techniques provides an atomic-scale view of the properties of metal-oxide materials. Surface polarity is a key concept for predicting the stability of oxide surfaces and is discussed using ZnO as an example. This review also highlights the role of surface defects for surface reactivity, and their interplay with defects in the bulk, for the case of TiO(2). Ultrathin metal-oxide films, grown either through reactive evaporation on metal single crystals or through oxidation of metal alloys (such as Al(2)O(3)/NiAl), have gained popularity as supports for planar model catalysts. The surface oxides that form upon oxidation on Pt-group metals (e.g., Ru, Rh, Pd, and Pt) are considered as model systems for CO oxidation.