Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;6(7):2816-25.
doi: 10.1016/j.actbio.2009.12.053. Epub 2010 Jan 4.

Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation

Affiliations

Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation

Z Q Yao et al. Acta Biomater. 2010 Jul.

Abstract

Equal channel angular pressing results in ultrafine-grained (approximately 200-500 nm) Ti with superior mechanical properties without harmful alloying elements, which benefits medical implants. To further improve the bioactivity of Ti surfaces, Ca/P-containing porous titania coatings were prepared on ultrafine-grained and coarse-grained Ti by micro-arc oxidation (MAO). The phase identification, composition, morphology and microstructure of the coatings and the thermal stability of ultrafine-grained Ti during MAO were investigated subsequently. The amounts of Ca, P and the Ca/P ratio of the coatings formed on ultrafine-grained Ti were greater than those on coarse-grained Ti. Nanocrystalline hydroxyapatite and alpha-Ca(3)(PO(4))(2) phases appeared in the MAO coating formed on ultrafine-grained Ti for 20 min (E20). Incubated in a simulated body fluid, bone-like apatite was completely formed on the surface of E20 after 2 days, thus evidencing preferable bioactivity. Compared with initial ultrafine-grained Ti, the microhardness of the E20 substrate was reduced by 8% to 2.9 GPa, which is considerably more than that of coarse-grained Ti (approximately 1.5 GPa).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources