Structural basis for L-lysine feedback inhibition of homocitrate synthase

J Biol Chem. 2010 Apr 2;285(14):10446-53. doi: 10.1074/jbc.M109.094383. Epub 2010 Jan 19.

Abstract

The alpha-aminoadipate pathway of lysine biosynthesis is modulated at the transcriptional and biochemical levels by feedback inhibition. The first enzyme in the alpha-aminoadipate pathway, homocitrate synthase (HCS), is the target of the feedback regulation and is strongly inhibited by l-lysine. Here we report the structure of Schizosaccharomyces pombe HCS (SpHCS) in complex with l-lysine. The structure illustrates that the amino acid directly competes with the substrate 2-oxoglutarate for binding within the active site of HCS. Differential recognition of the substrate and inhibitor is achieved via a switch position within the (alpha/beta)(8) TIM barrel of the enzyme that can distinguish between the C5-carboxylate group of 2-oxoglutarate and the epsilon-ammonium group of l-lysine. In vitro and in vivo assays demonstrate that mutations of the switch residues, which interact with the l-lysine epsilon-ammonium group, abrogate feedback inhibition, as do substitutions of residues within the C-terminal domain that were identified in a previous study of l-lysine-insensitive HCS mutants in Saccharomyces cerevisiae. Together, these results yield new insights into the mechanism of feedback regulation of an enzyme central to lysine biosynthesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalytic Domain
  • Crystallography, X-Ray
  • Feedback, Physiological*
  • Ketoglutaric Acids / metabolism
  • Lysine / chemistry
  • Lysine / genetics
  • Lysine / metabolism*
  • Mutagenesis, Site-Directed
  • Mutation / genetics
  • Oxo-Acid-Lyases / chemistry*
  • Oxo-Acid-Lyases / genetics
  • Oxo-Acid-Lyases / metabolism*
  • Protein Conformation
  • Schizosaccharomyces / enzymology
  • Schizosaccharomyces / genetics
  • Schizosaccharomyces / growth & development*

Substances

  • Ketoglutaric Acids
  • homocitrate synthase
  • Oxo-Acid-Lyases
  • Lysine