Diffusion tensor imaging (DTI)-based muscle fiber tracking enables the measurement of muscle architectural parameters, such as pennation angle (theta) and fiber tract length (L(ft)), throughout the entire muscle. Little is known, however, about the repeatability of either the muscle architectural measures or the underlying diffusion measures. Therefore, the goal of this study was to investigate the repeatability of DTI fiber tracking-based measurements and theta and L(ft). Four DTI acquisitions were performed on two days that allowed for between acquisition, within day, and between day analyses. The eigenvalues and fractional anisotropy were calculated at the maximum cross-sectional area of, and fiber tracking was performed in, the tibialis anterior muscle of nine healthy subjects. The between acquisitions condition had the highest repeatability for the DTI indices and the architectural parameters. The overall inter class correlation coefficients (ICC's) were greater than 0.6 for both theta and L(ft) and the repeatability coefficients were theta < 10.2 degrees and L(ft) < 50 mm. In conclusion, under the experimental and data analysis conditions used, the repeatability of the diffusion measures is very good and repeatability of the architectural measurements is acceptable. Therefore, this study demonstrates the feasibility for longitudinal studies of alterations in muscle architecture using DTI-based fiber tracking, under similar noise conditions and with similar diffusion characteristics.
2010 John Wiley & Sons, Ltd.