No evidence for mesothelial cell contact across the costal pleural space of sheep

J Appl Physiol (1985). 1991 Jan;70(1):123-34. doi: 10.1152/jappl.1991.70.1.123.

Abstract

Pleural space width was measured by four morphological approaches using either frozen hydrated or freeze-substituted blocks of chest wall and lung. Anesthetized sheep were held in the lateral (n = 2), sternal recumbent (n = 2), or vertical (head-up; n = 2) position for 30 min. The ribs and intercostal muscles were excised along a 20-cm vertical distance of the chest wall region, which was sprayed with liquid Freon 22, cooled with liquid nitrogen, to facilitate the fastest possible freezing of the visceral and parietal pleura. We measured pleural space width in frozen hydrated blocks by reflected-light and low-temperature scanning electron microscopy and in freeze-substituted, fixed, and embedded tissue blocks by light and transmission electron microscopy. We combined the data from the two groups of sheep held sternally recumbent and vertical because the results were comparable. The average arithmetic mean data for pleural space width determined by reflected-light analysis for samples near the top (18.5 microns) and bottom (20.3 microns) of the chest, separated by 15 cm of lung height, varied inversely with lung height (n = 4; P less than 0.009). The average harmonic mean data demonstrated a similar gravity-dependent gradient (17.3 and 18.8 microns, respectively; P less than 0.02). Therefore a slight vertical gradient of approximately -0.10 micron/cm of lung height was found for costal pleural space width. Pleural space width in the most dependent recesses, such as the costodiaphragmatic recess, reached 1-2 mm. We never found any contacts between the visceral and parietal pleura with either of the frozen hydrated preparations. No points of mesothelial cell contact were revealed in the light- and transmission electron microscopic views of the freeze-substituted tissue, despite an apparent narrower pleural space associated with the tissue-processing steps. We conclude that the pleural space has a slightly nonuniform width, contacts if they occur must be very infrequent, and pleural liquid clearance is probably facilitated by liquid accumulation in dependent regions where lymphatic pathways exist.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Female
  • Histological Techniques
  • Lung / anatomy & histology
  • Lung / physiology
  • Male
  • Microscopy, Electron
  • Microvilli / ultrastructure
  • Pleura / anatomy & histology*
  • Pleura / physiology
  • Respiratory Mechanics / physiology
  • Sheep