The cells and peripheral representation of sodium taste in mice

Nature. 2010 Mar 11;464(7286):297-301. doi: 10.1038/nature08783. Epub 2010 Jan 27.

Abstract

Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Behavior / physiology
  • Epithelial Sodium Channels / genetics
  • Epithelial Sodium Channels / metabolism
  • Mice
  • Mice, Transgenic
  • Sodium / physiology*
  • Taste / genetics*
  • Taste Buds / cytology
  • Taste Buds / metabolism
  • Taste Buds / physiology*

Substances

  • Epithelial Sodium Channels
  • Sodium