Evolutionary mirages: selection on binding site composition creates the illusion of conserved grammars in Drosophila enhancers

PLoS Genet. 2010 Jan 22;6(1):e1000829. doi: 10.1371/journal.pgen.1000829.

Abstract

The clustering of transcription factor binding sites in developmental enhancers and the apparent preferential conservation of clustered sites have been widely interpreted as proof that spatially constrained physical interactions between transcription factors are required for regulatory function. However, we show here that selection on the composition of enhancers alone, and not their internal structure, leads to the accumulation of clustered sites with evolutionary dynamics that suggest they are preferentially conserved. We simulated the evolution of idealized enhancers from Drosophila melanogaster constrained to contain only a minimum number of binding sites for one or more factors. Under this constraint, mutations that destroy an existing binding site are tolerated only if a compensating site has emerged elsewhere in the enhancer. Overlapping sites, such as those frequently observed for the activator Bicoid and repressor Krüppel, had significantly longer evolutionary half-lives than isolated sites for the same factors. This leads to a substantially higher density of overlapping sites than expected by chance and the appearance that such sites are preferentially conserved. Because D. melanogaster (like many other species) has a bias for deletions over insertions, sites tended to become closer together over time, leading to an overall clustering of sites in the absence of any selection for clustered sites. Since this effect is strongest for the oldest sites, clustered sites also incorrectly appear to be preferentially conserved. Following speciation, sites tend to be closer together in all descendent species than in their common ancestors, violating the common assumption that shared features of species' genomes reflect their ancestral state. Finally, we show that selection on binding site composition alone recapitulates the observed number of overlapping and closely neighboring sites in real D. melanogaster enhancers. Thus, this study calls into question the common practice of inferring "cis-regulatory grammars" from the organization and evolutionary dynamics of developmental enhancers.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Binding Sites
  • Computer Simulation
  • Conserved Sequence
  • Drosophila Proteins / chemistry
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster / chemistry
  • Drosophila melanogaster / genetics*
  • Drosophila melanogaster / metabolism
  • Enhancer Elements, Genetic*
  • Evolution, Molecular*
  • Models, Genetic
  • Protein Binding
  • Selection, Genetic
  • Transcription Factors / chemistry
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Drosophila Proteins
  • Transcription Factors