Swimming propulsion forces are enhanced by a small finger spread

J Appl Biomech. 2010 Feb;26(1):87-92. doi: 10.1123/jab.26.1.87.


The main aim of this study was to investigate the effect of finger spread on the propulsive force production in swimming using computational fluid dynamics. Computer tomography scans of an Olympic swimmer hand were conducted. This procedure involved three models of the hand with differing finger spreads: fingers closed together (no spread), fingers with a small (0.32 cm) spread, and fingers with large (0.64 cm) spread. Steady-state computational fluid dynamics analyses were performed using the Fluent code. The measured forces on the hand models were decomposed into drag and lift coefficients. For hand models, angles of attack of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, and 90 degrees, with a sweep back angle of 0 degrees, were used for the calculations. The results showed that the model with a small spread between fingers presented higher values of drag coefficient than did the models with fingers closed and fingers with a large spread. One can note that the drag coefficient presented the highest values for an attack angle of 90 degrees in the three hand models. The lift coefficient resembled a sinusoidal curve across the attack angle. The values for the lift coefficient presented few differences among the three models, for a given attack angle. These results suggested that fingers slightly spread could allow the hand to create more propulsive force during swimming.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acceleration*
  • Biomechanical Phenomena
  • Competitive Behavior / physiology*
  • Computer Simulation
  • Fingers / anatomy & histology
  • Fingers / diagnostic imaging
  • Fingers / physiology*
  • Hand / anatomy & histology
  • Hand / diagnostic imaging
  • Hand / physiology
  • Humans
  • Image Processing, Computer-Assisted
  • Rheology / methods*
  • Swimming / physiology*
  • Tomography, X-Ray Computed