Regulation of epithelial sodium channel trafficking by ubiquitination

Proc Am Thorac Soc. 2010 Feb;7(1):54-64. doi: 10.1513/pats.200909-096JS.

Abstract

Amiloride-sensitive epithelial sodium (Na(+)) channels (ENaC) play a crucial role in Na(+) transport and fluid reabsorption in the kidney, lung, and colon. The magnitude of ENaC-mediated Na(+) transport in epithelial cells depends on the average open probability of the channels and the number of channels on the apical surface of epithelial cells. The number of channels in the apical membrane, in turn, depends upon a balance between the rate of ENaC insertion and the rate of removal from the apical membrane. ENaC is made up of three homologous subunits, alpha, beta, and gamma. The C-terminal domain of all three subunits is intracellular and contains a proline rich motif (PPxY). Mutations or deletion of this PPxY motif in the beta and gamma subunits prevent the binding of one isoform of a specific ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein (Nedd4-2) to the channel in vitro and in transfected cell systems, thereby impeding ubiquitin conjugation of the channel subunits. Ubiquitin conjugation would seem to imply that ENaC turnover is determined by the ubiquitin-proteasome system, but when MDCK cells are transfected with ENaC, ubiquitin conjugation apparently leads to lysosomal degradation. However, in untransfected epithelial cells (A6) expressing endogenous ENaC, ENaC appears to be degraded by the ubiquitin-proteasome system. Nonetheless, in both transfected and untransfected cells, the rate of ENaC degradation is apparently controlled by the rate of Nedd4-2-mediated ENaC ubiquitination. Controlling the rate of degradation is apparently important enough to have multiple, redundant pathways to control Nedd4-2 and ENaC ubiquitination.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Autophagy / physiology*
  • Biological Transport / physiology
  • Endosomal Sorting Complexes Required for Transport / physiology
  • Epithelial Cells / chemistry*
  • Epithelial Cells / metabolism
  • Epithelial Sodium Channels / metabolism*
  • Half-Life
  • Humans
  • Lung
  • Lysosomes / metabolism
  • Membrane Proteins / metabolism
  • Nedd4 Ubiquitin Protein Ligases
  • Ubiquitin / metabolism
  • Ubiquitin-Protein Ligases / physiology
  • Ubiquitination / physiology*

Substances

  • Endosomal Sorting Complexes Required for Transport
  • Epithelial Sodium Channels
  • Membrane Proteins
  • Ubiquitin
  • Nedd4 Ubiquitin Protein Ligases
  • Nedd4 protein, human
  • Nedd4L protein, human
  • Ubiquitin-Protein Ligases