Tumor targeting and imaging in live animals with functionalized semiconductor quantum rods

ACS Appl Mater Interfaces. 2009 Mar;1(3):710-9. doi: 10.1021/am8002318.


In this contribution, we demonstrate that highly luminescent CdSe/CdS/ZnS quantum rods (QRs) coated with PEGylated phospholipids and conjugated with cyclic RGD peptide can be successfully used for tumor targeting and imaging in live animals. The design of these targeted luminescent probes involves encapsulation of hydrophobic CdSe/CdS/ZnS QRs with PEGylated phospholipids, followed by conjugation of these PEGylated phospholipids to ligands that specifically target the tumor vasculature. In vivo optical imaging studies in nude mice bearing pancreatic cancer xenografts, both subcutaneous and orthotopic, indicate that the QR probes accumulate at tumor sites via the cyclic RGD peptides on the QR surface binding to the alpha(V)beta(3) integrins overexpressed in the tumor vasculature, following systemic injection. In vivo tumor detection studies showed no adverse effects even at a dose roughly 6.5 times higher than has been reported for in vivo imaging studies using quantum dots. Cytotoxicity studies indicated the absence of any toxic effect in the cellular and tissue levels arising from functionalized QRs. These results demonstrate the vast potential of QRs as bright, photostable, and biocompatible luminescent probes for the early diagnosis of cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cadmium Compounds / chemistry
  • Female
  • Materials Testing
  • Mice
  • Mice, Nude
  • Micelles
  • Microscopy, Electron, Transmission
  • Nanotechnology
  • Neoplasm Transplantation
  • Pancreatic Neoplasms / diagnosis*
  • Peptides, Cyclic / chemistry
  • Quantum Dots*
  • Selenium Compounds / chemistry
  • Spectrometry, Fluorescence / methods*
  • Sulfides / chemistry
  • Transplantation, Heterologous
  • Whole Body Imaging / methods*
  • Zinc Compounds / chemistry


  • Cadmium Compounds
  • Micelles
  • Peptides, Cyclic
  • Selenium Compounds
  • Sulfides
  • Zinc Compounds
  • cyclic arginine-glycine-aspartic acid peptide
  • cadmium sulfide
  • cadmium selenide
  • zinc sulfide