We focus on the implications that the underlying neuronal dynamics might have on the possibility of anticipating seizures and designing an effective paradigm for their control. Transitions into seizures can be caused by parameter changes in the dynamic state or by interstate transitions as occur in multi-attractor systems; in the latter case, only a weak statistical prognosis of the seizure risk can be achieved. Nevertheless, we claim that by applying a suitable perturbation to the system, such as electrical stimulation, relevant features of the system's state may be detected and the risk of an impending seizure estimated. Furthermore, if these features are detected early, transitions into seizures may be blocked. On the basis of generic and realistic computer models we explore the concept of acute seizure control through state-dependent feedback stimulation. We show that in some classes of dynamic transitions, this can be achieved with a relatively limited amount of stimulation.
(c) 2010 Elsevier Inc. All rights reserved.