Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants

Plant J. 2010 May 1;62(4):549-59. doi: 10.1111/j.1365-313X.2010.04174.x. Epub 2010 Feb 18.

Abstract

Arabidopsis TRANSPARENT TESTA19 (TT19) encodes a glutathione-S-transferase (GST)-like protein that is involved in the accumulation of proanthocyanidins (PAs) in the seed coat. PA accumulation sites in tt19 immature seeds were observed as small vacuolar-like structures, whereas those in tt12, a mutant of the tonoplast-bound transporter of PAs, and tt12 tt19 were observed at peripheral regions of small vacuoles. We found that tt19 immature seeds had small spherical structures showing unique thick morphology by differential interference contrast microscopy. The distribution pattern of the thick structures overlapped the location of PA accumulation sites, and the thick structures were outlined with GFP-TT12 proteins in tt19. PA analysis showed higher (eightfold) levels of solvent-insoluble PAs in tt19 immature seeds compared with the wild type. Metabolic profiling of the solvent-soluble fraction by LC-MS demonstrated that PA derivatives such as epicatechins and epicatechin oligomers, although highly accumulated in the wild type, were absent in tt19. We also revealed that tt12 specifically accumulated glycosylated epicatechins, the putative transport substrates for TT12. tt12 tt19 showed a similar metabolic profile to tt19. Given the cytosolic localization of functional GFP-TT19 proteins, our results suggest that TT19, which acts prior to TT12, functions in the cytosol to maintain the regular accumulation of PA precursors, such as epicatechin and glycosylated epicatechin, in the vacuole. The PA pathway in the Arabidopsis seed coat is discussed in relation to the subcellular localization of PA metabolites.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics*
  • Arabidopsis / metabolism
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Catechin / analysis
  • Glutathione Transferase / genetics
  • Glutathione Transferase / metabolism*
  • Metabolome
  • Mutation
  • Proanthocyanidins / analysis*
  • Seeds / metabolism*
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Arabidopsis Proteins
  • Proanthocyanidins
  • Transcription Factors
  • tt12 protein, Arabidopsis
  • Catechin
  • Glutathione Transferase
  • TRANSPARENT TESTA 19 protein, Arabidopsis