Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles
- PMID: 20194427
- DOI: 10.1093/molbev/msq059
Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles
Abstract
According to the chromalveolate hypothesis (Cavalier-Smith T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347-366), the four eukaryotic groups with chlorophyll c-containing plastids originate from a single photosynthetic ancestor, which acquired its plastids by secondary endosymbiosis with a red alga. So far, molecular phylogenies have failed to either support or disprove this view. Here, we devise a phylogenomic falsification of the chromalveolate hypothesis that estimates signal strength across the three genomic compartments: If the four chlorophyll c-containing lineages indeed derive from a single photosynthetic ancestor, then similar amounts of plastid, mitochondrial, and nuclear sequences should allow to recover their monophyly. Our results refute this prediction, with statistical support levels too different to be explained by evolutionary rate variation, phylogenetic artifacts, or endosymbiotic gene transfer. Therefore, we reject the chromalveolate hypothesis as falsified in favor of more complex evolutionary scenarios involving multiple higher order eukaryote-eukaryote endosymbioses.
Similar articles
-
Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages).Genome Biol Evol. 2014 Mar;6(3):666-84. doi: 10.1093/gbe/evu043. Genome Biol Evol. 2014. PMID: 24572015 Free PMC article.
-
After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c.Photosynth Res. 2011 Jan;107(1):103-15. doi: 10.1007/s11120-010-9584-2. Epub 2010 Jul 30. Photosynth Res. 2011. PMID: 20676772 Review.
-
Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages.Mol Biol Evol. 2005 Sep;22(9):1772-82. doi: 10.1093/molbev/msi172. Epub 2005 May 25. Mol Biol Evol. 2005. PMID: 15917498
-
Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates.Mol Biol Evol. 2007 Aug;24(8):1702-13. doi: 10.1093/molbev/msm089. Epub 2007 May 7. Mol Biol Evol. 2007. PMID: 17488740
-
Chromalveolates and the evolution of plastids by secondary endosymbiosis.J Eukaryot Microbiol. 2009 Jan-Feb;56(1):1-8. doi: 10.1111/j.1550-7408.2008.00371.x. J Eukaryot Microbiol. 2009. PMID: 19335769 Review.
Cited by
-
Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families.Genome Biol Evol. 2012;4(3):199-211. doi: 10.1093/gbe/evs003. Epub 2012 Jan 9. Genome Biol Evol. 2012. PMID: 22230142 Free PMC article.
-
Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae.BMC Evol Biol. 2015 Feb 10;15:16. doi: 10.1186/s12862-015-0286-4. BMC Evol Biol. 2015. PMID: 25887237 Free PMC article.
-
Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.PLoS One. 2011;6(12):e29138. doi: 10.1371/journal.pone.0029138. Epub 2011 Dec 14. PLoS One. 2011. PMID: 22195008 Free PMC article.
-
Evolution of light-harvesting complex proteins from Chl c-containing algae.BMC Evol Biol. 2011 Apr 15;11:101. doi: 10.1186/1471-2148-11-101. BMC Evol Biol. 2011. PMID: 21496217 Free PMC article.
-
Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates.Genome Biol Evol. 2013;5(12):2368-81. doi: 10.1093/gbe/evt179. Genome Biol Evol. 2013. PMID: 24259313 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
