Microfluidic platforms for studies of angiogenesis, cell migration, and cell-cell interactions. Sixth International Bio-Fluid Mechanics Symposium and Workshop March 28-30, 2008 Pasadena, California

Ann Biomed Eng. 2010 Mar;38(3):1164-77. doi: 10.1007/s10439-010-9899-3.


Recent advances in microfluidic technologies have opened the door for creating more realistic in vitro cell culture methods that replicate many aspects of the true in vivo microenvironment. These new designs (i) provide enormous flexibility in controlling the critical biochemical and biomechanical factors that influence cell behavior, (ii) allow for the introduction of multiple cell types in a single system, (iii) provide for the establishment of biochemical gradients in two- or three-dimensional geometries, and (iv) allow for high quality, time-lapse imaging. Here, some of the recent developments are reviewed, with a focus on studies from our own laboratory in three separate areas: angiogenesis, cell migration in the context of tumor cell-endothelial interactions, and liver tissue engineering.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bioreactors*
  • Cell Communication / physiology*
  • Cell Culture Techniques / instrumentation*
  • Cell Movement / physiology*
  • Equipment Design / trends
  • Microfluidic Analytical Techniques / instrumentation*
  • Neovascularization, Physiologic / physiology*
  • Tissue Engineering / trends*